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When a lightly-dmped oscillator is excited by a stationary random

process the response has the appearance of an oscillation with a slow,

random fluctuation in amplitude. The envelope of the oscillation has

been studied by Rice [I] for the case of stationary Gaussian response.

When Gaussian excitation is applied to a nonlinear oscillator the

response is generally non-Gaussian. In the non-Gaussian case the Rice

technique for defining an envelope is no longer directly applicable.

It is not clear whether there is any possibility of extending the Rice

apprvach to obtain meanj igfl results in the non-Gaussian case. The

present author has given two alternative techniques 2] which permit

evaluation of the first-order probability distribution for the response

envelope of a nonlinear single-degree-of-freedom oscillator with

Gaussian excitation. The purpose of this note is to show that for a

general class of nonlinear restoring forces these two first-order

distributions are identical. Furthermofon, for linear systems this

distribution is identical with that given by the Rice approach. Our



ABSTRACT

The Envelope of Random Vibration of a

Lightly-Damped Nonlinear Oscillator

by
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There are several ways in which the envelope of the stationary

random response of a lightly-damped oscillator can be characterized.

Two characterizations which lead to the same first-order probability

distributions for systems with conservative nonlinear restoring

forces are described. In such systems the envelope distributions

are in general different from the distributions of peak amplitudes.

The Duffing system is used to illustrate these general results.

For the special case of a Gaussian oscillator an envelope

characterization has been given by Rice. It is shown that in this

case the above envelope characterization has the same first-order

distribution as that given by Rice, but that the second-order

probability distributions are, in general, different.
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envelope definition in never-the-less not completely identical with

that of Rice even for narrow-band Gaussian responses because the second-

order probability distributions for an id'al band-pass filter differ

by terms proportional to the square of th(- bandwidth.

1. Envelope Obtained from Peak Statistics

We consider nonlinear oscillators described by the equation

Y~~ ~ Y-2 (X(1

where is a constant linear damping coefficient, g(x) is the nonlinear

restoring force function and f(t) is the excitation which we will take

to be a stationary Gaussian process with uniform spectral density So

(acceleration squared per unit of circular frequency) over all frequencies

from 0J = -CxOto W= DO. We will assum that g(x) is an odd function

such that xg(x) ics positive definite. The integral

I ) (2)Sjo

is thus a positive definite even function. It is further appropriate

to aesu tnat g(x) remains sufficiently large for large x that

,_ < 01 (3)

where 6_ is a real constant. The condition (3) insures that the

stationary response x(t) of (1) has a finite mean square.

The joint probability distribution density (x,v) of x and v = x for

the stationary response of (1) can be obtained as a solution of the
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Fokker-Planck equation L3] We find

k IXA*-6L 7

where C is the normlization constant and

7r 9o(5)
yq -

is the mean square value of v(t) in the stationary response. The expected

number of crossings of the level x = a with positive slope per unit

time is jl

, . ,b.&.J) #{Zt (6)

Inserting (4i) into (6) yields

where is the expected number of zero-crossings with positive slope

per unit time. The statistical parameter (7) can also be considered to

rcprze -a 444 pmbblt disr , ionb the forl1A,4in he iriatie~ Fkr i nt.

In a narrow-band process the response consists essentially of recognizable

cycles with one positive peak and one negative peak peycle. The

parameter V counts the average number of cycles per unit time while

the parameter 1 counts the ave:age number of cycles per unit time with

peaks above the level x = a. Thus, on the average, the fraction of cycles
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with peaks higher than x = a is

The probability densit, of peaks is

dzp i )- -a

substituting from (7) and (2). It is to be emphasized that (8) and (9)

represent the distribution of peaks within the population of all

positive peaks.

An envelope distribution can be obtained from (9) by assuming

tbat the envelope is a smnooth gradual curve joining the peakL :..d th.t

on the average the time the envelope spends between a and a + da is just

the number of such peaks multiplied by - (a) whichi is the undamped

period of a free vibration of amplitude a. The fraction of time so

spent is

- b L) C, ~ (10)

The undamped period -r (a) can be obtained by integrating (1) with 0

and f(t) = 0.

oo
f -G ( 2 (&,11)
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Inserting (9) and (ii) into (10) we have the first-order probability

density for an envelope of the response process defined by (1).

Evaluation of (12) for a particular nonlinear ftuction g(x) may be

difficult. In addition to the operations explicitly indicated in (12)

the parameter ' required evaluation of the normlization constant in

(4) as follows

- 2 _ / p x,(3=G
V/

The argumnts leading to (12) are not rigorous. Fuithermore, the

envelope so defined is insufficiently detailed to permit extension

beyond the first-order probability distribution and its accompanying

first-order statistics. We next consider a more definitely defined

envelope which turns out to have the same first-order distribution

as (12).

3. Envelope defined by total energ

Along with the random processes x(t) and v(t) determined by (1)

let us consider the envelope process a(t) where

a~) -1 /, - -'- (1X)
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The interpretation here is that a(t) is the amplitude which would be

attained if the sum of the instantaneous kinetic and potential energies

were converted entirely into potential energy; i.e., a(t) is the peak

amplitude which would be obtained in a hypothetical free undamped

oscillation of the system if the initial conditions for the free

oscillation were the current values of x(t) and v(t). The first-order

probability distribution for a(t) then follows from the joint distribution

of x and v. Taking advantage of symetry we have

P~rd~<) = 4 dx (15)

of 0

as the ensemble fraction of cases for which the combination of x and v

makes the envelope defined by (14) smaller than a given value of a.

The probability density for the envelope is

(a)~J() ~ (16)dP4 dZ

Inserting the joint density (4) leads to

/P_(a) Cj 2 0 fG - 7 (17)

which is identical with (12) if we take into account the relation (13)

between the normalization constant C and the average frequency . Thus

for arbitrary nonlinear restoring forces of the type indicated the heuristic

envelope of Section 1 has the same first-order probability distribution

as the envelope based on the energy relation (14).
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3. Example - Duffing System

We consider the particular case of (1) in which

where it is possible to evaluate the general expressions obtained above.

A convenient normalization is provided by the parameter (67 where

T (19)

is the mean square value of x in the limiting linear case where L -9,0.

Setting

the governing equation (1) takes the form

6 (21)

The free undamped oscillations of amplitude Ymax - a can be described

in terms of the Jacobian elliptic cosine function [4]

y ~ c(&-{, ~)(22)

where m is the modulus of the elliptic function

=1 (23)

and the paramterl I is given by

2 I-2 (24)



The >eriod 1'(a) is

where K(m) is the complete elliptic integral which gives the real quarter

period of the elliptic function J.7.I
The joint probability P(y,j) for this case follows from (4)

e L - 2(sfb)

where 4.he integral

16yz)(27)

provides the correct normalization. The probability density for the peaks

(9) is obtained without evaluating (Z7)

and is plotted in Fig. 1 for several values of the nonlinearity parameter

This distribution was recently obtained by Lyon [5] using eseentially the

same procedure as that described in Section 1. In [5] it was additionally

guggested that (26) might also be interpreted as the dencity function of an

envelope. Since this suggestion takes no account of the tendency of "cycles"

with different peak amplitudes to have different periods we doubt that it



portrays an envelope as effectively as the distribution

which follows from (10) by using (ef) and the relation

1(6

which is obtained from (13). The distribution (29) can also be obtained

directly from (17) when the integral is recognized as the complete

elliptic integral of (OS). Fig. 2 shows plots of (29) for different

values of E.

For the Duffing oscillator there is not a great difference between

(?8) and (29) until 6 is quite large. In Fig. 3 there is a comparison

between the distributions of (W) and (29) for 6 = 2. When 6= 0 the

system (21) is linear, the undamped free vibration period is independent

of amplitude and the distributions (28) and (29) both reduce to the

Rayeligh distribution

C1
$'a e -5 (31f)

which is the known amplitude distribution for narrow-band Gaussian

Processes and servc . eually .well to deerilbe the peaks or tne envelope.

The first-order distribution of the response I is of some auxiliary

interest for this system. It follows from (2A) by integration over all
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values ofy 2.

This is shown in Figure 4 for several values of the nonlinearity parameter

C .

4. Second-order Envelope Distribution

The energy-based envelope definition (14) gives promise of providing

a means for obtaining second-order probabilities or second-order statistics

for the envelope of the response of (1) to Gaussian excitation. The joint

probability that at time t the envelope will 'e less than aI and that at

time t + e the envelope will be less than a 2 is given by

d2( 2, z,

as a direct extension of (15). The density p(ala 2 ) then follows from

differentiation of (33). Our work along this line has so far been

limited, to cases where p(xlvlx 2,v 2 ) has been Gaussian. In the Gaussian

case we will show that the second-order density p(al.,a._) so obtained is

not identical with the corresponding density which follows from Rice's

envelope definition.

When the system (1) is linear the response to Gaussian excitation

is also Gaussian. In this case the envelope definition (14) can be altered

to make it depend solely on the response process; ice., Independent of the



oscillator parameters. Thus for a narrow-band Gaussian processes x(t)

the energy-based envelope a(t) is given by

where Q,, = 2 i is the expected circular frequency of the process

and v - i. The result (34) follows from setting G(x) =(l/N I- x2 i (14).

The first-order distribution of a(t) is that of Rayleigh as noted in -the

previous section. The second order density follows from (33) but because

of (34) a great simplification is obtained by transforming to polar

coordinates. We find

7r .7

~~(G,1 a)aa~

In order to evaluate this it is necessary to know the Joint density

p(xlVlx 2,v2) which in turn depends on the autocorrelation function

and its first two derivatives. We shall limit our further discussion to

a particular choice for (3).

5. Example-ideal Band Pass Filter

Let the spectral density of x(t) be zero except in bands of width 2o<

centered on + 6)4 where the density is constant. The corresponding auto-

correlation function is
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where 6- = E~xg is the mean square of the process. We introduce the

following notation 9S

f( C (39)-3
/ c~(

The functions f, and f 2 are shown in Figure 5. The parameter is a

measure of the process bandwidth. In terms of these we find successively

- () a zt~ 25n 4 frT j

V-N

Kv'i ue o ro, i

The joint density of four Gaussian variables yl, y2 , Y3 and y is

where -A- is the determinant and the A. are the cofactors of the

covariance matrix for the Yi. If we identify the Yi with Xl, V, x2 and v 2

respectively the covariance matrix is

R(O) 0 R() R'(-)

0 -R1"(0) -R'(Z7) -R"(o ) (

S -R(')R(o) 0

R'(7) -R"(C) 0 -R"(o)
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In principle all that remains is to insert (39) into (41 ), evaluate (4)

and then obtain the second-order probability distribution density using

(y35. We have, however, been unable to complete this program without

approximaton; but if we neglect terms which are o( %) in (39) the

calculation is rather simple. For the distribution (3) we find

with

5rl

Here the argument of f, is o(Z as in ( 9).

A final preliminary before evaluating (3 is the determination of

the expected frequency o"

Here again we have neglected the term and taken 6)o to be identical

with 6 Lm The integration of (54) then becomes atraightforward and

we obtain for the joint density

b~a,,¢) - _, c - ¢z w _-____7.I 4



which is identical with that obtained by Rice [I] with a dJ-ffe-- nt en'ielope

definition. Since we have had to inake O( W ) approximations whereas no

such approximation was required in I] there is a suggestion that the

two envelopes are not the same.

in order to establish this point we turn to a simple second-..rder

envelope statistic which can be evaluated exactly for both envelope

definitions. Using Rice's definition and hence (45)

E~ ~ = E4 aiL utj, (aaw o, (O)

where the integration is performed along the lines indicated in E6] and

use is made of C7], [89an ~

Using the definition (34) we have

2.I7x~j E~zJ' £Lxit,- E Er ] (47

and since xl, x 2 , vI and v2 are jointly Gaussian

- --4 (46)

so that using (i3) permits us to evaluate (47) exactly. The result is
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fairly complicated but it can be put in the following form

E+a,4- E i (4)

with

which indicates that there definitely is an O( ' discrepancy between

the values of E [al2 a] obtained from Rice's envelope definition and

from the energy-based envelope (34.). Finally it should be noted that

this discrepancy applies only to the special ideal band-pass process of

(77). For other narrow-band processes the discrepancy may not necessarily

be p:-tportional to the square of the bandwidth.



-16-

AWWEDMM

The author expresses his thanks to P.A. Croce for his help in

calculating and drawing the curves.



-17-

REFERENCES

1. S. 0. Rice, Mathematical analysis of random noise, Bell System Tech.
J., 23, 282-332 (1944); 24, 46-156 (1945). Reprinted in N. Wax,
"Selected Papers on Noise and Stochastic Processes," Dover Publications,
N.Y., (1954).

2. S.H. Crandall, Random vibration of a nonlinear system with a set-up
spring, ASME Paper No. 61-WA-152, to appear in J. Appl. Mechs.

3. See, for example, S.H. Crandall, Random vibration of systems with
nonlinear restoring forces, to appear in the Proceedings of the
International Symposium on Nonlinear Oscillations, Kiev, September, 1961,
also available as AFOSR 708, June, 1961.

4. L.M. Milne-Thomson, "Jacobian Elliptic Function Tables," Dover
Publications, Inc., N.Y., 1950.

5. R.H. Lyon, On the Vibration Statistics of a Randomly Excited Hand-
Spring Oscillator, J. Acoust. Soc. Am., 32, 716-719 (1960).

6. R.H. Lyon, On the Vibration Statistics of a Randomly Excited Hand-Spring
Oscillator, II, J. Acoust. Soc. Am., 33, 1395-1403, (1961).

7. A. Erdelyi, Bateman Manuscript Project, "Higher Transcendental Functions,
Vol. II," McGraw-Hill Book Co., N.Y,, 1953. Formula (15) on p. 18.

8. Reference 7. Formula (35) on p. 93.

9. A. Ereelyi, Bateman Manuscript Project, "Higher Transcendental Functions,
Vol. I," McGraw-Hill Book Co., N.Y., 1953. Formula (7) on p. 101.



-18-

CAPTIONS FR FIGURES

1, Probability density distribution of peaks for Duffing oscillator

subjected to white-noise excitation for various values of the

nonlinearity paranter.

2. Probability density distribution of an envelope for the Duffing

oscillator.

3. Comparison of probability density' distributions of the peaks (?a)

and of the envelope (Z9) for the Duffing oscillator with 6 w 2.

4. Probability density distribution for Duffing system response process.

5. The functions of fl(T) and f2 (T1) defined in (C3) and used to

describe the correlations for the ideal band-pass filter response.
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